RET TECOM BACKGROUND

Intro to Networking

Introduction to the Internet

Part I: Introduction

<u>goals:</u>

- get context, overview, "feel" of networking
- 🗖 approach:
 - descriptive
 - use Internet as example

<u>Overview:</u>

- what's the Internet
- what's a protocol?
- network edge
- network core
- access net, physical media
- performance: loss, delay

What's the Internet: "nuts and bolts" view

- protocols: control sending, receiving of msgs
 e.g., TCP, IP, HTTP, FTP, PPP
- Internet: "network of networks"
 - loosely hierarchical
 - public Internet versus private intranet
- Internet standards
 - RFC: Request for comments
 - IETF: Internet Engineering Task Force

What's the Internet: a service view

- communication
 infrastructure enables
 distributed applications:
 - WWW, email, games, ecommerce, database., voting,
 - more?
- communication services provided:
 - connectionless
 - connection-oriented

Internet: Key Technologies

- Four technologies have played a vital role in the evolution of the Internet
 - TCP and IP
 - IP internet routing and delivery
 - TCP reliable end-to-end transport
 - Dynamic routing
 - Dynamic route discovery
 - Route adjustment in face of congestion and failure
 - Packet switching
 - Wide area data networking
 - datagram & virtual circuit models
 - Ethernet
 - Dominates local area networking

What's a protocol?

human protocols:

- "what's the time?"
- "I have a question"
- introductions
- ... specific msgs sent ... specific actions taken when msgs received, or other events

network protocols:

- machines rather than humans
- all communication activity in Internet governed by protocols

protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

What's a protocol?

a human protocol and a computer network protocol:

Q: Other human protocol?

<u>A closer look at network structure:</u>

- network edge: applications and hosts
- network core:
 - o routers
 - o network of networks
- access networks, physical media: communication links

The network edge:

end systems (hosts):

- run application programs
 e.g., WWW, email
- at "edge of network"

client/server model

- client host requests, receives service from server
- e.g., WWW client (browser)/ server; email client/server

□ peer-peer model:

- host interaction symmetric
- e.g.: teleconferencing

Network edge: connection-oriented service

<u>Goal:</u> data transfer between end sys.

- handshaking: setup (prepare for) data transfer ahead of time
 - Hello, hello back human protocol
 - set up "state" in two communicating hosts
- TCP Transmission Control Protocol
 - Internet's connectionoriented service

TCP service [RFC 793]

- reliable, in-order bytestream data transfer
 - loss: acknowledgements and retransmissions

flow control:

 sender won't overwhelm receiver

congestion control:

 senders "slow down sending rate" when network congested

Network edge: connectionless service

Goal: data transfer between end systems ○ same as before! UDP - User Datagram Protocol [RFC 768]: Internet's connectionless service o unreliable data transfer o no flow control o no congestion control

App's using TCP:

HTTP (WWW), FTP (file transfer), Telnet (remote login), SMTP (email)

App's using UDP:

 streaming media, teleconferencing, Internet telephony

The Network Core

- mesh of interconnected routers
- <u>the</u> fundamental question: how is data transferred through net?
 - circuit switching: dedicated circuit per call: telephone net
 - packet-switching: data sent thru net in discrete "chunks"

Network Core: Circuit Switching

End-end resources reserved for "call"

- link bandwidth, switch capacity
- dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup required

Network Core: Circuit Switching

network resources (e.g., bandwidth) divided into "pieces"

- pieces allocated to calls
- resource piece *idle* if not used by owning call (no sharing)
- dividing link bandwidth into "pieces"
 - frequency division
 - time division

TDM:

Network Core: Packet Switching

each end-end data stream divided into *packets*

- user A, B packets share network resources
- each packet uses full link bandwidth
- □ resources used *as needed*,

resource contention:

- aggregate resource demand can exceed amount available
- congestion: packets queue, wait for link use
- store and forward: packets move one hop at a time
 - transmit over link
 - wait turn at next link

Network Core: Packet Switching

Network Core: Packet Switching

Packet-switching: store and forward behavior

Packet switching versus circuit switching

Packet switching allows more users to use network!

- 1 Mbit link
- each user:
 - 100Kbps when "active"
 - o active 10% of time
- circuit-switching:
 - o 10 users
- packet switching:
 - with 35 users, probability > 10 active less that .004

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- Great for bursty data
 - resource sharing
 - no call setup

Excessive congestion: packet delay and loss

- protocols needed for reliable data transfer, congestion control
- Q: How to provide circuit-like behavior?
 - bandwidth guarantees needed for audio/video apps
 - (still an unsolved problem)

Packet-switched networks: routing

Goal: move packets among routers from source to destination

• several path selection algorithms

datagram network:

- destination address determines next hop
- routes may change during session
- o analogy: driving, asking directions
- virtual circuit network:
 - each packet carries tag (virtual circuit ID), tag determines next hop
 - fixed path determined at *call setup time*, remains fixed thru call
 - o routers maintain per-call state

Network Taxonomy

Telecommunication networks:

Circuit-switched or Packet-switched

Circuit-switching implementation: FDM or TDM

Circuit-switching implementation:

• Virtual-circuits or datagram

Access networks and physical media

- *Q: How to connect end systems to edge router?*
- residential access nets
- institutional access networks (school, company)
- mobile access networks

Keep in mind:

- bandwidth (bits per second) of access network?
- shared or dedicated?

Residential access: point to point access

Dialup via modem

 up to 56Kbps direct access to router (conceptually)

- ISDN: intergrated services digital network: 128Kbps alldigital connect to router
- ADSL: asymmetric digital subscriber line
 - up to 1 Mbps home-to-router
 - up to 8 Mbps router-to-home
 - ADSL deployment in London area?

Residential access: cable modems

□ HFC: hybrid fiber coax

- asymmetric: up to 10Mbps upstream, 1 Mbps downstream
- network of cable and fiber attaches homes to ISP router
 - shared access to router among home
 - issues: congestion, dimensioning
- deployment: available via cable companies, e.g., Rogers

Institutional access: local area networks

company/univ local area network (LAN) connects end system to edge router

Ethernet:

- shared or dedicated cable connects end system and router
- 10 Mbs, 100Mbps,
 Gigabit Ethernet
- deployment: institutions, home LANs

<u>Wireless access networks</u>

- shared wireless access network connects end system to router
- wireless LANs:
 - radio spectrum replaces wire
 - e.g., Lucent Wavelan 10
 Mbps
- wider-area wireless

access

 CDPD: wireless access to ISP router via cellular network

Physical Media

physical link:

transmitted data bit propagates across link

guided media:

 signals propagate in solid media: copper, fiber

unguided media:

 signals propagate freely e.g., radio

<u>Twisted Pair (TP)</u>

- two insulated copper wires
 - Category 3: traditional phone wires, 10 Mbps ethernet
 - Category 5 TP: 100Mbps ethernet

Physical Media: coax, fiber

Coaxial cable:

- wire (signal carrier) within a wire (shield)
 - baseband: single channel on cable
 - broadband: multiple channel on cable
- bidirectional
- common use in 10Mbs Ethernet

Fiber optic cable:

- glass fiber carrying light pulses
- high-speed operation:
 - o 100Mbps Ethernet
 - high-speed point-to-point transmission (e.g., 5 Gps)
- Iow error rate

Physical media: radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - o interference

Radio link types: microwave ○ e.g. up to 45 Mbps channels □ LAN (e.g., waveLAN) ○ 2Mbps, 11Mbps □ wide-area (e.g., cellular) ○ e.g. CDPD, 10's Kbps □ satellite • up to 50Mbps channel (or multiple smaller channels)

- o 270 Msec end-end delay
- geosynchronous versus LEOS

Delay in packet-switched networks

- packets experience delay on end-to-end path
- four sources of delay at each hop

- nodal processing:
 - check bit errors
 - determine output link
- queueing
 - time waiting at output link for transmission
 - depends on congestion level of router

Delay in packet-switched networks

Transmission delay:

- R=link bandwidth (bps)
- L=packet length (bits)
- time to send bits into link = L/R

Propagation delay:

- d = length of physical link
- s = propagation speed in medium (~2×10⁸ m/sec)
- propagation delay = d/s

Queueing delay (revisited)

- R=link bandwidth (bps)
- L=packet length (bits)
- a=average packet arrival rate

traffic intensity = La/R

- □ La/R ~ 0: average queueing delay small
- □ La/R -> 1: delays become large
- La/R > 1: more "work" arriving than can be serviced, average delay infinite!

